F012 - Advanced Analytics and Insights
Objective
Implement comprehensive analytics capabilities powered by AI to provide deep insights into manuscript trends, author progress, market dynamics, and predictive modeling within the MyStoryFlow platform.
Quick Implementation
Using MyStoryFlow Components
- Analytics engine from
@mystoryflow/analytics - Data warehouse from
@mystoryflow/data-warehouse - Visualization library from
@mystoryflow/charts - Real-time processing from
@mystoryflow/streaming
New Requirements
- Time-series analysis for progress tracking
- Predictive modeling for success likelihood
- Comparative market analysis
- Sentiment and emotion tracking
- Advanced visualization dashboards
MVP Implementation
1. Analytics Engine Core
// packages/analytics-engine/src/services/advanced-analytics.ts
import { AIService } from '@mystoryflow/manuscript-analysis'
import { DataWarehouse } from '@mystoryflow/data-warehouse'
import { Logger } from '@mystoryflow/logger'
import { TimeSeriesAnalyzer } from './time-series'
import { PredictiveModeler } from './predictive-modeling'
export class AdvancedAnalyticsEngine {
private aiService: AIService
private dataWarehouse: DataWarehouse
private timeSeriesAnalyzer: TimeSeriesAnalyzer
private predictiveModeler: PredictiveModeler
private logger: Logger
constructor() {
this.aiService = new AIService()
this.dataWarehouse = new DataWarehouse()
this.timeSeriesAnalyzer = new TimeSeriesAnalyzer()
this.predictiveModeler = new PredictiveModeler()
this.logger = new Logger('AdvancedAnalytics')
}
async generateComprehensiveInsights(params: {
userId: string
manuscriptId?: string
timeRange: TimeRange
insightTypes: InsightType[]
}): Promise<ComprehensiveInsights> {
const { userId, manuscriptId, timeRange, insightTypes } = params
// Gather historical data
const historicalData = await this.gatherHistoricalData(
userId,
manuscriptId,
timeRange
)
// Generate insights based on requested types
const insights: ComprehensiveInsights = {
summary: await this.generateExecutiveSummary(historicalData),
insights: {}
}
for (const type of insightTypes) {
switch (type) {
case 'writing-progress':
insights.insights.writingProgress = await this.analyzeWritingProgress(
historicalData
)
break
case 'quality-trends':
insights.insights.qualityTrends = await this.analyzeQualityTrends(
historicalData
)
break
case 'market-positioning':
insights.insights.marketPositioning = await this.analyzeMarketPositioning(
manuscriptId,
historicalData
)
break
case 'predictive-success':
insights.insights.successPrediction = await this.predictSuccess(
manuscriptId,
historicalData
)
break
case 'improvement-velocity':
insights.insights.improvementVelocity = await this.analyzeImprovementVelocity(
historicalData
)
break
case 'engagement-patterns':
insights.insights.engagementPatterns = await this.analyzeEngagementPatterns(
historicalData
)
break
}
}
// Generate actionable recommendations
insights.recommendations = await this.generateActionableRecommendations(
insights.insights
)
return insights
}
private async analyzeWritingProgress(
data: HistoricalData
): Promise<WritingProgressInsights> {
// Calculate writing velocity
const velocityMetrics = this.timeSeriesAnalyzer.calculateVelocity(
data.wordCountHistory,
'daily'
)
// Identify productivity patterns
const productivityPatterns = await this.identifyProductivityPatterns(
data.writingSessions
)
// Analyze consistency
const consistencyScore = this.calculateConsistencyScore(
data.writingSessions
)
// Project completion timeline
const projectedCompletion = await this.projectCompletionDate(
data.currentWordCount,
data.targetWordCount,
velocityMetrics
)
// Identify blockers and accelerators
const factors = await this.analyzeProductivityFactors(data)
return {
currentVelocity: velocityMetrics.current,
averageVelocity: velocityMetrics.average,
trend: velocityMetrics.trend,
productivityPatterns,
consistencyScore,
projectedCompletion,
accelerators: factors.accelerators,
blockers: factors.blockers,
recommendations: this.generateProgressRecommendations(
velocityMetrics,
productivityPatterns
)
}
}
private async analyzeQualityTrends(
data: HistoricalData
): Promise<QualityTrendsInsights> {
// Extract quality scores over time
const qualityTimeSeries = data.analyses.map(analysis => ({
timestamp: analysis.createdAt,
scores: analysis.scores,
overallScore: analysis.overallScore
}))
// Analyze dimension-specific trends
const dimensionTrends = await this.analyzeDimensionTrends(qualityTimeSeries)
// Identify improvement areas
const improvementAreas = this.identifyImprovementAreas(dimensionTrends)
// Calculate improvement velocity
const improvementVelocity = this.timeSeriesAnalyzer.calculateTrend(
qualityTimeSeries.map(q => ({
timestamp: q.timestamp,
value: q.overallScore
}))
)
// Predict quality trajectory
const qualityPrediction = await this.predictiveModeler.predictTimeSeries(
qualityTimeSeries,
30 // 30 days forecast
)
return {
currentQuality: qualityTimeSeries[qualityTimeSeries.length - 1]?.overallScore || 0,
qualityTrend: improvementVelocity,
dimensionTrends,
strongestDimensions: this.getTopDimensions(dimensionTrends, 'positive'),
weakestDimensions: this.getTopDimensions(dimensionTrends, 'negative'),
improvementAreas,
prediction: qualityPrediction,
benchmarkComparison: await this.compareToGenreBenchmarks(
qualityTimeSeries[qualityTimeSeries.length - 1],
data.genre
)
}
}
private async analyzeMarketPositioning(
manuscriptId: string,
data: HistoricalData
): Promise<MarketPositioningInsights> {
// Get current market data
const marketData = await this.dataWarehouse.getMarketData(data.genre)
// Analyze competitive positioning
const competitiveAnalysis = await this.analyzeCompetitivePosition(
manuscriptId,
marketData
)
// Identify market trends
const marketTrends = await this.identifyMarketTrends(
data.genre,
marketData
)
// Calculate market fit score
const marketFitScore = await this.calculateMarketFit(
data.latestAnalysis,
marketTrends
)
// Find market opportunities
const opportunities = await this.identifyMarketOpportunities(
data.latestAnalysis,
marketData,
marketTrends
)
return {
competitivePosition: competitiveAnalysis,
marketFitScore,
genreRanking: competitiveAnalysis.percentileRank,
trendingElements: marketTrends.trending,
decliningElements: marketTrends.declining,
opportunities,
comparableTitles: await this.findComparableTitles(
manuscriptId,
marketData
),
uniqueSellingPoints: await this.identifyUSPs(
data.latestAnalysis,
marketData
),
recommendations: this.generateMarketRecommendations(
marketFitScore,
opportunities
)
}
}
private async predictSuccess(
manuscriptId: string,
data: HistoricalData
): Promise<SuccessPredictionInsights> {
// Gather all relevant features
const features = await this.extractPredictiveFeatures(data)
// Run multiple prediction models
const predictions = {
commercial: await this.predictiveModeler.predictCommercialSuccess(features),
critical: await this.predictiveModeler.predictCriticalSuccess(features),
reader: await this.predictiveModeler.predictReaderEngagement(features),
viral: await this.predictiveModeler.predictViralPotential(features)
}
// Identify key success factors
const successFactors = await this.identifyKeySuccessFactors(
features,
predictions
)
// Calculate confidence intervals
const confidence = this.calculatePredictionConfidence(
features,
data.sampleSize
)
// Generate scenario analysis
const scenarios = await this.generateScenarioAnalysis(
manuscriptId,
features,
predictions
)
return {
predictions,
confidence,
successFactors,
riskFactors: this.identifyRiskFactors(features, predictions),
scenarios,
improvementImpact: await this.simulateImprovementImpact(
features,
predictions
),
timeline: this.generateSuccessTimeline(predictions),
recommendations: this.generateSuccessRecommendations(
predictions,
successFactors
)
}
}
}2. Time Series Analysis
// packages/analytics-engine/src/services/time-series.ts
import { DataFrame } from '@mystoryflow/data-processing'
export class TimeSeriesAnalyzer {
calculateVelocity(
data: TimeSeriesData[],
granularity: 'daily' | 'weekly' | 'monthly'
): VelocityMetrics {
// Aggregate data by granularity
const aggregated = this.aggregateByPeriod(data, granularity)
// Calculate moving averages
const ma7 = this.movingAverage(aggregated, 7)
const ma30 = this.movingAverage(aggregated, 30)
// Calculate velocity
const currentVelocity = this.calculateCurrentVelocity(aggregated)
const averageVelocity = aggregated.reduce((sum, d) => sum + d.value, 0) /
aggregated.length
// Determine trend
const trend = this.determineTrend(ma7, ma30)
// Calculate acceleration
const acceleration = this.calculateAcceleration(aggregated)
return {
current: currentVelocity,
average: averageVelocity,
trend,
acceleration,
movingAverages: { ma7, ma30 },
volatility: this.calculateVolatility(aggregated),
consistency: this.calculateConsistency(aggregated)
}
}
detectAnomalies(data: TimeSeriesData[]): Anomaly[] {
const anomalies: Anomaly[] = []
// Calculate baseline statistics
const mean = this.calculateMean(data)
const stdDev = this.calculateStdDev(data, mean)
// Z-score method for anomaly detection
data.forEach((point, index) => {
const zScore = Math.abs((point.value - mean) / stdDev)
if (zScore > 3) {
anomalies.push({
timestamp: point.timestamp,
value: point.value,
zScore,
type: point.value > mean ? 'spike' : 'drop',
severity: this.calculateSeverity(zScore),
context: this.getAnomalyContext(data, index)
})
}
})
// Pattern-based anomaly detection
const patternAnomalies = this.detectPatternAnomalies(data)
anomalies.push(...patternAnomalies)
return anomalies
}
forecastTrend(
historicalData: TimeSeriesData[],
periods: number
): ForecastResult {
// Apply multiple forecasting methods
const methods = {
linear: this.linearRegression(historicalData),
exponential: this.exponentialSmoothing(historicalData),
arima: this.arimaForecast(historicalData),
prophet: this.prophetForecast(historicalData)
}
// Generate forecasts
const forecasts = Object.entries(methods).map(([method, model]) => ({
method,
values: this.generateForecast(model, periods),
confidence: this.calculateModelConfidence(model, historicalData)
}))
// Ensemble forecast
const ensemble = this.ensembleForecast(forecasts)
return {
forecasts,
ensemble,
bestMethod: this.selectBestMethod(forecasts),
confidenceIntervals: this.calculateConfidenceIntervals(ensemble),
seasonality: this.detectSeasonality(historicalData)
}
}
private detectSeasonality(data: TimeSeriesData[]): SeasonalityInfo {
// Fourier transform for frequency analysis
const frequencies = this.fourierTransform(data)
// Identify dominant periods
const dominantPeriods = this.identifyDominantPeriods(frequencies)
// Calculate seasonal strength
const seasonalStrength = this.calculateSeasonalStrength(
data,
dominantPeriods
)
return {
hasSeasonality: seasonalStrength > 0.3,
periods: dominantPeriods,
strength: seasonalStrength,
patterns: this.extractSeasonalPatterns(data, dominantPeriods)
}
}
}3. Predictive Modeling
// packages/analytics-engine/src/services/predictive-modeling.ts
import { MLModel } from '@mystoryflow/ml-core'
export class PredictiveModeler {
private models: Map<string, MLModel>
constructor() {
this.models = new Map([
['commercial-success', new MLModel('xgboost', commercialSuccessConfig)],
['reader-engagement', new MLModel('neural-network', readerEngagementConfig)],
['viral-potential', new MLModel('random-forest', viralPotentialConfig)],
['quality-trajectory', new MLModel('lstm', qualityTrajectoryConfig)]
])
}
async predictCommercialSuccess(
features: FeatureSet
): Promise<CommercialPrediction> {
const model = this.models.get('commercial-success')!
// Prepare features
const preparedFeatures = this.prepareCommercialFeatures(features)
// Make prediction
const prediction = await model.predict(preparedFeatures)
// Calculate feature importance
const featureImportance = await model.getFeatureImportance()
// Generate probability distribution
const probabilities = await model.predictProbabilities(preparedFeatures)
return {
successProbability: prediction.probability,
salesPotential: this.estimateSalesPotential(prediction, features),
revenueProjection: this.projectRevenue(prediction, features),
breakoutChance: probabilities.breakout,
keyFactors: this.extractKeyFactors(featureImportance),
marketSegments: await this.predictMarketSegments(features),
timeline: this.generateCommercialTimeline(prediction)
}
}
async predictReaderEngagement(
features: FeatureSet
): Promise<EngagementPrediction> {
const model = this.models.get('reader-engagement')!
const prediction = await model.predict(
this.prepareEngagementFeatures(features)
)
return {
engagementScore: prediction.score,
completionRate: prediction.components.completion,
shareability: prediction.components.sharing,
reviewLikelihood: prediction.components.reviews,
rereadability: prediction.components.rereading,
emotionalImpact: await this.predictEmotionalImpact(features),
audienceSegments: await this.identifyAudienceSegments(features),
viralElements: this.identifyViralElements(features, prediction)
}
}
async simulateImprovements(
currentFeatures: FeatureSet,
improvements: ProposedImprovement[]
): Promise<ImprovementSimulation[]> {
const simulations: ImprovementSimulation[] = []
for (const improvement of improvements) {
// Apply improvement to features
const improvedFeatures = this.applyImprovement(
currentFeatures,
improvement
)
// Predict outcomes with improvement
const improvedPredictions = {
commercial: await this.predictCommercialSuccess(improvedFeatures),
engagement: await this.predictReaderEngagement(improvedFeatures),
quality: await this.predictQualityScore(improvedFeatures)
}
// Calculate impact
const impact = this.calculateImprovementImpact(
currentFeatures,
improvedFeatures,
improvedPredictions
)
simulations.push({
improvement,
predictedOutcomes: improvedPredictions,
impact,
effortVsReward: this.calculateROI(improvement.effort, impact),
confidence: this.calculateSimulationConfidence(improvement)
})
}
return simulations.sort((a, b) => b.effortVsReward - a.effortVsReward)
}
}4. Visualization API
// apps/story-analyzer/src/app/api/analytics/insights/route.ts
import { NextRequest, NextResponse } from 'next/server'
import { AdvancedAnalyticsEngine } from '@mystoryflow/analytics-engine'
import { withAuth } from '@mystoryflow/auth'
import { ChartGenerator } from '@mystoryflow/charts'
export async function POST(req: NextRequest) {
try {
const session = await withAuth(req)
if (!session) {
return NextResponse.json({ error: 'Unauthorized' }, { status: 401 })
}
const {
manuscriptId,
timeRange,
insightTypes = ['all'],
visualizations = true
} = await req.json()
// Check user permissions for advanced analytics
const hasAccess = await checkAnalyticsAccess(
session.user.id,
session.user.subscriptionTier
)
if (!hasAccess) {
return NextResponse.json(
{ error: 'Advanced analytics requires Professional plan' },
{ status: 403 }
)
}
// Generate insights
const analyticsEngine = new AdvancedAnalyticsEngine()
const insights = await analyticsEngine.generateComprehensiveInsights({
userId: session.user.id,
manuscriptId,
timeRange: parseTimeRange(timeRange),
insightTypes: insightTypes === ['all'] ?
['writing-progress', 'quality-trends', 'market-positioning',
'predictive-success', 'improvement-velocity', 'engagement-patterns'] :
insightTypes
})
// Generate visualizations if requested
let charts = {}
if (visualizations) {
const chartGenerator = new ChartGenerator()
charts = await chartGenerator.generateInsightCharts(insights)
}
return NextResponse.json({
insights,
charts,
exportUrl: await generateExportUrl(insights, charts),
generatedAt: new Date()
})
} catch (error) {
console.error('Analytics generation failed:', error)
return NextResponse.json(
{ error: 'Failed to generate insights' },
{ status: 500 }
)
}
}
// Real-time analytics streaming
export async function GET(req: NextRequest) {
const session = await withAuth(req)
if (!session) {
return new Response('Unauthorized', { status: 401 })
}
const { searchParams } = new URL(req.url)
const manuscriptId = searchParams.get('manuscriptId')
const metrics = searchParams.get('metrics')?.split(',') || ['all']
// Set up SSE stream
const stream = new TransformStream()
const writer = stream.writable.getWriter()
const encoder = new TextEncoder()
// Start streaming analytics
const analyticsStream = new AnalyticsStreamService()
analyticsStream.subscribe({
userId: session.user.id,
manuscriptId,
metrics,
onData: async (data) => {
await writer.write(
encoder.encode(`data: ${JSON.stringify(data)}\n\n`)
)
},
onError: async (error) => {
await writer.write(
encoder.encode(`event: error\ndata: ${error.message}\n\n`)
)
}
})
return new Response(stream.readable, {
headers: {
'Content-Type': 'text/event-stream',
'Cache-Control': 'no-cache',
'Connection': 'keep-alive'
}
})
}5. Comparative Analytics
// packages/analytics-engine/src/services/comparative-analytics.ts
export class ComparativeAnalytics {
async compareManuscripts(
manuscriptIds: string[],
dimensions: ComparisonDimension[]
): Promise<ComparativeAnalysis> {
// Fetch data for all manuscripts
const manuscriptData = await Promise.all(
manuscriptIds.map(id => this.fetchManuscriptData(id))
)
// Perform dimension-specific comparisons
const comparisons: DimensionComparison[] = []
for (const dimension of dimensions) {
const comparison = await this.compareDimension(
manuscriptData,
dimension
)
comparisons.push(comparison)
}
// Calculate relative strengths
const relativeStrengths = this.calculateRelativeStrengths(
manuscriptData,
comparisons
)
// Identify patterns
const patterns = await this.identifyComparativePatterns(
manuscriptData,
comparisons
)
// Generate insights
const insights = await this.generateComparativeInsights(
comparisons,
patterns
)
return {
manuscripts: manuscriptData.map(m => ({
id: m.id,
title: m.title,
overallScore: m.scores.overall
})),
comparisons,
relativeStrengths,
patterns,
insights,
visualizations: {
radar: this.generateRadarChartData(comparisons),
timeSeries: this.generateTimeSeriesComparison(manuscriptData),
heatmap: this.generateComparisonHeatmap(comparisons)
}
}
}
async compareToMarket(
manuscriptId: string,
comparisonGroup: 'genre' | 'all' | 'bestsellers'
): Promise<MarketComparison> {
const manuscript = await this.fetchManuscriptData(manuscriptId)
// Get comparison group data
const groupData = await this.fetchComparisonGroup(
comparisonGroup,
manuscript.genre
)
// Calculate percentile ranks
const percentiles = this.calculatePercentiles(manuscript, groupData)
// Identify competitive advantages
const advantages = this.identifyCompetitiveAdvantages(
manuscript,
groupData
)
// Find gaps and opportunities
const gaps = this.identifyMarketGaps(manuscript, groupData)
// Generate positioning strategy
const positioning = await this.generatePositioningStrategy(
manuscript,
advantages,
gaps
)
return {
manuscript: {
id: manuscript.id,
title: manuscript.title,
genre: manuscript.genre
},
comparisonGroup: {
type: comparisonGroup,
size: groupData.length,
avgScore: this.calculateGroupAverage(groupData)
},
percentiles,
advantages,
gaps,
positioning,
recommendations: this.generateMarketRecommendations(
percentiles,
advantages,
gaps
)
}
}
}Database Schema
-- Analytics data warehouse tables
CREATE TABLE analytics.manuscript_metrics (
id UUID PRIMARY KEY DEFAULT uuid_generate_v4(),
manuscript_id UUID REFERENCES analyzer.manuscripts(id),
metric_date DATE,
word_count INTEGER,
quality_scores JSONB,
engagement_metrics JSONB,
writing_session_data JSONB,
created_at TIMESTAMP DEFAULT NOW(),
UNIQUE(manuscript_id, metric_date),
INDEX idx_metrics_manuscript_date (manuscript_id, metric_date DESC)
);
-- Predictive model results
CREATE TABLE analytics.predictions (
id UUID PRIMARY KEY DEFAULT uuid_generate_v4(),
manuscript_id UUID REFERENCES analyzer.manuscripts(id),
prediction_type VARCHAR(50),
model_version VARCHAR(20),
predictions JSONB,
confidence_scores JSONB,
feature_importance JSONB,
created_at TIMESTAMP DEFAULT NOW(),
INDEX idx_predictions_manuscript (manuscript_id),
INDEX idx_predictions_type (prediction_type)
);
-- Time series data
CREATE TABLE analytics.time_series (
id UUID PRIMARY KEY DEFAULT uuid_generate_v4(),
entity_id UUID, -- Can be manuscript, user, or organization
entity_type VARCHAR(50),
metric_name VARCHAR(100),
timestamp TIMESTAMP,
value DECIMAL,
metadata JSONB,
INDEX idx_timeseries_entity (entity_id, entity_type, metric_name),
INDEX idx_timeseries_time (timestamp DESC)
);
-- Comparative analysis results
CREATE TABLE analytics.comparative_analyses (
id UUID PRIMARY KEY DEFAULT uuid_generate_v4(),
analysis_type VARCHAR(50),
entity_ids UUID[],
comparison_data JSONB,
insights JSONB,
created_at TIMESTAMP DEFAULT NOW(),
expires_at TIMESTAMP,
INDEX idx_comparative_type (analysis_type),
INDEX idx_comparative_entities (entity_ids)
);
-- Market intelligence data
CREATE TABLE analytics.market_intelligence (
id UUID PRIMARY KEY DEFAULT uuid_generate_v4(),
genre VARCHAR(50),
period_start DATE,
period_end DATE,
trending_elements JSONB,
market_metrics JSONB,
competitive_landscape JSONB,
UNIQUE(genre, period_start, period_end),
INDEX idx_market_genre_period (genre, period_end DESC)
);
-- User analytics preferences
CREATE TABLE analytics.user_preferences (
user_id UUID PRIMARY KEY REFERENCES auth.users(id),
default_time_range VARCHAR(50),
preferred_insights TEXT[],
dashboard_layout JSONB,
notification_settings JSONB,
custom_metrics JSONB,
INDEX idx_analytics_prefs_user (user_id)
);MVP Acceptance Criteria
- Comprehensive analytics engine
- Time series analysis capabilities
- Predictive modeling system
- Comparative analytics
- Market intelligence integration
- Real-time streaming analytics
- Advanced visualizations
- Export functionality
- API endpoints
Post-MVP Enhancements
- Custom metric definitions
- Cohort analysis
- A/B testing framework
- Anomaly alerting system
- Collaborative analytics
- Mobile analytics app
- Voice-activated insights
- AR/VR data visualization
Implementation Time
- Analytics Engine: 2 days
- Time Series Analysis: 1 day
- Predictive Modeling: 1.5 days
- Comparative Analytics: 1 day
- API & Visualization: 1 day
- Testing: 1 day
- Total: 7.5 days
Dependencies
- F007 - Manuscript Analysis (for base data)
- F009 - Scoring System (for quality metrics)
- F010 - Recommendations (for improvement tracking)
- F011 - Coach Matching (for coaching outcomes)
- Data warehouse infrastructure
Next Feature
After completion, proceed to F013-AI-REPORTING for automated report generation.