Skip to Content
📚 MyStoryFlow Docs — Your guide to preserving family stories

F012 - Advanced Analytics and Insights

Objective

Implement comprehensive analytics capabilities powered by AI to provide deep insights into manuscript trends, author progress, market dynamics, and predictive modeling within the MyStoryFlow platform.

Quick Implementation

Using MyStoryFlow Components

  • Analytics engine from @mystoryflow/analytics
  • Data warehouse from @mystoryflow/data-warehouse
  • Visualization library from @mystoryflow/charts
  • Real-time processing from @mystoryflow/streaming

New Requirements

  • Time-series analysis for progress tracking
  • Predictive modeling for success likelihood
  • Comparative market analysis
  • Sentiment and emotion tracking
  • Advanced visualization dashboards

MVP Implementation

1. Analytics Engine Core

// packages/analytics-engine/src/services/advanced-analytics.ts import { AIService } from '@mystoryflow/manuscript-analysis' import { DataWarehouse } from '@mystoryflow/data-warehouse' import { Logger } from '@mystoryflow/logger' import { TimeSeriesAnalyzer } from './time-series' import { PredictiveModeler } from './predictive-modeling' export class AdvancedAnalyticsEngine { private aiService: AIService private dataWarehouse: DataWarehouse private timeSeriesAnalyzer: TimeSeriesAnalyzer private predictiveModeler: PredictiveModeler private logger: Logger constructor() { this.aiService = new AIService() this.dataWarehouse = new DataWarehouse() this.timeSeriesAnalyzer = new TimeSeriesAnalyzer() this.predictiveModeler = new PredictiveModeler() this.logger = new Logger('AdvancedAnalytics') } async generateComprehensiveInsights(params: { userId: string manuscriptId?: string timeRange: TimeRange insightTypes: InsightType[] }): Promise<ComprehensiveInsights> { const { userId, manuscriptId, timeRange, insightTypes } = params // Gather historical data const historicalData = await this.gatherHistoricalData( userId, manuscriptId, timeRange ) // Generate insights based on requested types const insights: ComprehensiveInsights = { summary: await this.generateExecutiveSummary(historicalData), insights: {} } for (const type of insightTypes) { switch (type) { case 'writing-progress': insights.insights.writingProgress = await this.analyzeWritingProgress( historicalData ) break case 'quality-trends': insights.insights.qualityTrends = await this.analyzeQualityTrends( historicalData ) break case 'market-positioning': insights.insights.marketPositioning = await this.analyzeMarketPositioning( manuscriptId, historicalData ) break case 'predictive-success': insights.insights.successPrediction = await this.predictSuccess( manuscriptId, historicalData ) break case 'improvement-velocity': insights.insights.improvementVelocity = await this.analyzeImprovementVelocity( historicalData ) break case 'engagement-patterns': insights.insights.engagementPatterns = await this.analyzeEngagementPatterns( historicalData ) break } } // Generate actionable recommendations insights.recommendations = await this.generateActionableRecommendations( insights.insights ) return insights } private async analyzeWritingProgress( data: HistoricalData ): Promise<WritingProgressInsights> { // Calculate writing velocity const velocityMetrics = this.timeSeriesAnalyzer.calculateVelocity( data.wordCountHistory, 'daily' ) // Identify productivity patterns const productivityPatterns = await this.identifyProductivityPatterns( data.writingSessions ) // Analyze consistency const consistencyScore = this.calculateConsistencyScore( data.writingSessions ) // Project completion timeline const projectedCompletion = await this.projectCompletionDate( data.currentWordCount, data.targetWordCount, velocityMetrics ) // Identify blockers and accelerators const factors = await this.analyzeProductivityFactors(data) return { currentVelocity: velocityMetrics.current, averageVelocity: velocityMetrics.average, trend: velocityMetrics.trend, productivityPatterns, consistencyScore, projectedCompletion, accelerators: factors.accelerators, blockers: factors.blockers, recommendations: this.generateProgressRecommendations( velocityMetrics, productivityPatterns ) } } private async analyzeQualityTrends( data: HistoricalData ): Promise<QualityTrendsInsights> { // Extract quality scores over time const qualityTimeSeries = data.analyses.map(analysis => ({ timestamp: analysis.createdAt, scores: analysis.scores, overallScore: analysis.overallScore })) // Analyze dimension-specific trends const dimensionTrends = await this.analyzeDimensionTrends(qualityTimeSeries) // Identify improvement areas const improvementAreas = this.identifyImprovementAreas(dimensionTrends) // Calculate improvement velocity const improvementVelocity = this.timeSeriesAnalyzer.calculateTrend( qualityTimeSeries.map(q => ({ timestamp: q.timestamp, value: q.overallScore })) ) // Predict quality trajectory const qualityPrediction = await this.predictiveModeler.predictTimeSeries( qualityTimeSeries, 30 // 30 days forecast ) return { currentQuality: qualityTimeSeries[qualityTimeSeries.length - 1]?.overallScore || 0, qualityTrend: improvementVelocity, dimensionTrends, strongestDimensions: this.getTopDimensions(dimensionTrends, 'positive'), weakestDimensions: this.getTopDimensions(dimensionTrends, 'negative'), improvementAreas, prediction: qualityPrediction, benchmarkComparison: await this.compareToGenreBenchmarks( qualityTimeSeries[qualityTimeSeries.length - 1], data.genre ) } } private async analyzeMarketPositioning( manuscriptId: string, data: HistoricalData ): Promise<MarketPositioningInsights> { // Get current market data const marketData = await this.dataWarehouse.getMarketData(data.genre) // Analyze competitive positioning const competitiveAnalysis = await this.analyzeCompetitivePosition( manuscriptId, marketData ) // Identify market trends const marketTrends = await this.identifyMarketTrends( data.genre, marketData ) // Calculate market fit score const marketFitScore = await this.calculateMarketFit( data.latestAnalysis, marketTrends ) // Find market opportunities const opportunities = await this.identifyMarketOpportunities( data.latestAnalysis, marketData, marketTrends ) return { competitivePosition: competitiveAnalysis, marketFitScore, genreRanking: competitiveAnalysis.percentileRank, trendingElements: marketTrends.trending, decliningElements: marketTrends.declining, opportunities, comparableTitles: await this.findComparableTitles( manuscriptId, marketData ), uniqueSellingPoints: await this.identifyUSPs( data.latestAnalysis, marketData ), recommendations: this.generateMarketRecommendations( marketFitScore, opportunities ) } } private async predictSuccess( manuscriptId: string, data: HistoricalData ): Promise<SuccessPredictionInsights> { // Gather all relevant features const features = await this.extractPredictiveFeatures(data) // Run multiple prediction models const predictions = { commercial: await this.predictiveModeler.predictCommercialSuccess(features), critical: await this.predictiveModeler.predictCriticalSuccess(features), reader: await this.predictiveModeler.predictReaderEngagement(features), viral: await this.predictiveModeler.predictViralPotential(features) } // Identify key success factors const successFactors = await this.identifyKeySuccessFactors( features, predictions ) // Calculate confidence intervals const confidence = this.calculatePredictionConfidence( features, data.sampleSize ) // Generate scenario analysis const scenarios = await this.generateScenarioAnalysis( manuscriptId, features, predictions ) return { predictions, confidence, successFactors, riskFactors: this.identifyRiskFactors(features, predictions), scenarios, improvementImpact: await this.simulateImprovementImpact( features, predictions ), timeline: this.generateSuccessTimeline(predictions), recommendations: this.generateSuccessRecommendations( predictions, successFactors ) } } }

2. Time Series Analysis

// packages/analytics-engine/src/services/time-series.ts import { DataFrame } from '@mystoryflow/data-processing' export class TimeSeriesAnalyzer { calculateVelocity( data: TimeSeriesData[], granularity: 'daily' | 'weekly' | 'monthly' ): VelocityMetrics { // Aggregate data by granularity const aggregated = this.aggregateByPeriod(data, granularity) // Calculate moving averages const ma7 = this.movingAverage(aggregated, 7) const ma30 = this.movingAverage(aggregated, 30) // Calculate velocity const currentVelocity = this.calculateCurrentVelocity(aggregated) const averageVelocity = aggregated.reduce((sum, d) => sum + d.value, 0) / aggregated.length // Determine trend const trend = this.determineTrend(ma7, ma30) // Calculate acceleration const acceleration = this.calculateAcceleration(aggregated) return { current: currentVelocity, average: averageVelocity, trend, acceleration, movingAverages: { ma7, ma30 }, volatility: this.calculateVolatility(aggregated), consistency: this.calculateConsistency(aggregated) } } detectAnomalies(data: TimeSeriesData[]): Anomaly[] { const anomalies: Anomaly[] = [] // Calculate baseline statistics const mean = this.calculateMean(data) const stdDev = this.calculateStdDev(data, mean) // Z-score method for anomaly detection data.forEach((point, index) => { const zScore = Math.abs((point.value - mean) / stdDev) if (zScore > 3) { anomalies.push({ timestamp: point.timestamp, value: point.value, zScore, type: point.value > mean ? 'spike' : 'drop', severity: this.calculateSeverity(zScore), context: this.getAnomalyContext(data, index) }) } }) // Pattern-based anomaly detection const patternAnomalies = this.detectPatternAnomalies(data) anomalies.push(...patternAnomalies) return anomalies } forecastTrend( historicalData: TimeSeriesData[], periods: number ): ForecastResult { // Apply multiple forecasting methods const methods = { linear: this.linearRegression(historicalData), exponential: this.exponentialSmoothing(historicalData), arima: this.arimaForecast(historicalData), prophet: this.prophetForecast(historicalData) } // Generate forecasts const forecasts = Object.entries(methods).map(([method, model]) => ({ method, values: this.generateForecast(model, periods), confidence: this.calculateModelConfidence(model, historicalData) })) // Ensemble forecast const ensemble = this.ensembleForecast(forecasts) return { forecasts, ensemble, bestMethod: this.selectBestMethod(forecasts), confidenceIntervals: this.calculateConfidenceIntervals(ensemble), seasonality: this.detectSeasonality(historicalData) } } private detectSeasonality(data: TimeSeriesData[]): SeasonalityInfo { // Fourier transform for frequency analysis const frequencies = this.fourierTransform(data) // Identify dominant periods const dominantPeriods = this.identifyDominantPeriods(frequencies) // Calculate seasonal strength const seasonalStrength = this.calculateSeasonalStrength( data, dominantPeriods ) return { hasSeasonality: seasonalStrength > 0.3, periods: dominantPeriods, strength: seasonalStrength, patterns: this.extractSeasonalPatterns(data, dominantPeriods) } } }

3. Predictive Modeling

// packages/analytics-engine/src/services/predictive-modeling.ts import { MLModel } from '@mystoryflow/ml-core' export class PredictiveModeler { private models: Map<string, MLModel> constructor() { this.models = new Map([ ['commercial-success', new MLModel('xgboost', commercialSuccessConfig)], ['reader-engagement', new MLModel('neural-network', readerEngagementConfig)], ['viral-potential', new MLModel('random-forest', viralPotentialConfig)], ['quality-trajectory', new MLModel('lstm', qualityTrajectoryConfig)] ]) } async predictCommercialSuccess( features: FeatureSet ): Promise<CommercialPrediction> { const model = this.models.get('commercial-success')! // Prepare features const preparedFeatures = this.prepareCommercialFeatures(features) // Make prediction const prediction = await model.predict(preparedFeatures) // Calculate feature importance const featureImportance = await model.getFeatureImportance() // Generate probability distribution const probabilities = await model.predictProbabilities(preparedFeatures) return { successProbability: prediction.probability, salesPotential: this.estimateSalesPotential(prediction, features), revenueProjection: this.projectRevenue(prediction, features), breakoutChance: probabilities.breakout, keyFactors: this.extractKeyFactors(featureImportance), marketSegments: await this.predictMarketSegments(features), timeline: this.generateCommercialTimeline(prediction) } } async predictReaderEngagement( features: FeatureSet ): Promise<EngagementPrediction> { const model = this.models.get('reader-engagement')! const prediction = await model.predict( this.prepareEngagementFeatures(features) ) return { engagementScore: prediction.score, completionRate: prediction.components.completion, shareability: prediction.components.sharing, reviewLikelihood: prediction.components.reviews, rereadability: prediction.components.rereading, emotionalImpact: await this.predictEmotionalImpact(features), audienceSegments: await this.identifyAudienceSegments(features), viralElements: this.identifyViralElements(features, prediction) } } async simulateImprovements( currentFeatures: FeatureSet, improvements: ProposedImprovement[] ): Promise<ImprovementSimulation[]> { const simulations: ImprovementSimulation[] = [] for (const improvement of improvements) { // Apply improvement to features const improvedFeatures = this.applyImprovement( currentFeatures, improvement ) // Predict outcomes with improvement const improvedPredictions = { commercial: await this.predictCommercialSuccess(improvedFeatures), engagement: await this.predictReaderEngagement(improvedFeatures), quality: await this.predictQualityScore(improvedFeatures) } // Calculate impact const impact = this.calculateImprovementImpact( currentFeatures, improvedFeatures, improvedPredictions ) simulations.push({ improvement, predictedOutcomes: improvedPredictions, impact, effortVsReward: this.calculateROI(improvement.effort, impact), confidence: this.calculateSimulationConfidence(improvement) }) } return simulations.sort((a, b) => b.effortVsReward - a.effortVsReward) } }

4. Visualization API

// apps/story-analyzer/src/app/api/analytics/insights/route.ts import { NextRequest, NextResponse } from 'next/server' import { AdvancedAnalyticsEngine } from '@mystoryflow/analytics-engine' import { withAuth } from '@mystoryflow/auth' import { ChartGenerator } from '@mystoryflow/charts' export async function POST(req: NextRequest) { try { const session = await withAuth(req) if (!session) { return NextResponse.json({ error: 'Unauthorized' }, { status: 401 }) } const { manuscriptId, timeRange, insightTypes = ['all'], visualizations = true } = await req.json() // Check user permissions for advanced analytics const hasAccess = await checkAnalyticsAccess( session.user.id, session.user.subscriptionTier ) if (!hasAccess) { return NextResponse.json( { error: 'Advanced analytics requires Professional plan' }, { status: 403 } ) } // Generate insights const analyticsEngine = new AdvancedAnalyticsEngine() const insights = await analyticsEngine.generateComprehensiveInsights({ userId: session.user.id, manuscriptId, timeRange: parseTimeRange(timeRange), insightTypes: insightTypes === ['all'] ? ['writing-progress', 'quality-trends', 'market-positioning', 'predictive-success', 'improvement-velocity', 'engagement-patterns'] : insightTypes }) // Generate visualizations if requested let charts = {} if (visualizations) { const chartGenerator = new ChartGenerator() charts = await chartGenerator.generateInsightCharts(insights) } return NextResponse.json({ insights, charts, exportUrl: await generateExportUrl(insights, charts), generatedAt: new Date() }) } catch (error) { console.error('Analytics generation failed:', error) return NextResponse.json( { error: 'Failed to generate insights' }, { status: 500 } ) } } // Real-time analytics streaming export async function GET(req: NextRequest) { const session = await withAuth(req) if (!session) { return new Response('Unauthorized', { status: 401 }) } const { searchParams } = new URL(req.url) const manuscriptId = searchParams.get('manuscriptId') const metrics = searchParams.get('metrics')?.split(',') || ['all'] // Set up SSE stream const stream = new TransformStream() const writer = stream.writable.getWriter() const encoder = new TextEncoder() // Start streaming analytics const analyticsStream = new AnalyticsStreamService() analyticsStream.subscribe({ userId: session.user.id, manuscriptId, metrics, onData: async (data) => { await writer.write( encoder.encode(`data: ${JSON.stringify(data)}\n\n`) ) }, onError: async (error) => { await writer.write( encoder.encode(`event: error\ndata: ${error.message}\n\n`) ) } }) return new Response(stream.readable, { headers: { 'Content-Type': 'text/event-stream', 'Cache-Control': 'no-cache', 'Connection': 'keep-alive' } }) }

5. Comparative Analytics

// packages/analytics-engine/src/services/comparative-analytics.ts export class ComparativeAnalytics { async compareManuscripts( manuscriptIds: string[], dimensions: ComparisonDimension[] ): Promise<ComparativeAnalysis> { // Fetch data for all manuscripts const manuscriptData = await Promise.all( manuscriptIds.map(id => this.fetchManuscriptData(id)) ) // Perform dimension-specific comparisons const comparisons: DimensionComparison[] = [] for (const dimension of dimensions) { const comparison = await this.compareDimension( manuscriptData, dimension ) comparisons.push(comparison) } // Calculate relative strengths const relativeStrengths = this.calculateRelativeStrengths( manuscriptData, comparisons ) // Identify patterns const patterns = await this.identifyComparativePatterns( manuscriptData, comparisons ) // Generate insights const insights = await this.generateComparativeInsights( comparisons, patterns ) return { manuscripts: manuscriptData.map(m => ({ id: m.id, title: m.title, overallScore: m.scores.overall })), comparisons, relativeStrengths, patterns, insights, visualizations: { radar: this.generateRadarChartData(comparisons), timeSeries: this.generateTimeSeriesComparison(manuscriptData), heatmap: this.generateComparisonHeatmap(comparisons) } } } async compareToMarket( manuscriptId: string, comparisonGroup: 'genre' | 'all' | 'bestsellers' ): Promise<MarketComparison> { const manuscript = await this.fetchManuscriptData(manuscriptId) // Get comparison group data const groupData = await this.fetchComparisonGroup( comparisonGroup, manuscript.genre ) // Calculate percentile ranks const percentiles = this.calculatePercentiles(manuscript, groupData) // Identify competitive advantages const advantages = this.identifyCompetitiveAdvantages( manuscript, groupData ) // Find gaps and opportunities const gaps = this.identifyMarketGaps(manuscript, groupData) // Generate positioning strategy const positioning = await this.generatePositioningStrategy( manuscript, advantages, gaps ) return { manuscript: { id: manuscript.id, title: manuscript.title, genre: manuscript.genre }, comparisonGroup: { type: comparisonGroup, size: groupData.length, avgScore: this.calculateGroupAverage(groupData) }, percentiles, advantages, gaps, positioning, recommendations: this.generateMarketRecommendations( percentiles, advantages, gaps ) } } }

Database Schema

-- Analytics data warehouse tables CREATE TABLE analytics.manuscript_metrics ( id UUID PRIMARY KEY DEFAULT uuid_generate_v4(), manuscript_id UUID REFERENCES analyzer.manuscripts(id), metric_date DATE, word_count INTEGER, quality_scores JSONB, engagement_metrics JSONB, writing_session_data JSONB, created_at TIMESTAMP DEFAULT NOW(), UNIQUE(manuscript_id, metric_date), INDEX idx_metrics_manuscript_date (manuscript_id, metric_date DESC) ); -- Predictive model results CREATE TABLE analytics.predictions ( id UUID PRIMARY KEY DEFAULT uuid_generate_v4(), manuscript_id UUID REFERENCES analyzer.manuscripts(id), prediction_type VARCHAR(50), model_version VARCHAR(20), predictions JSONB, confidence_scores JSONB, feature_importance JSONB, created_at TIMESTAMP DEFAULT NOW(), INDEX idx_predictions_manuscript (manuscript_id), INDEX idx_predictions_type (prediction_type) ); -- Time series data CREATE TABLE analytics.time_series ( id UUID PRIMARY KEY DEFAULT uuid_generate_v4(), entity_id UUID, -- Can be manuscript, user, or organization entity_type VARCHAR(50), metric_name VARCHAR(100), timestamp TIMESTAMP, value DECIMAL, metadata JSONB, INDEX idx_timeseries_entity (entity_id, entity_type, metric_name), INDEX idx_timeseries_time (timestamp DESC) ); -- Comparative analysis results CREATE TABLE analytics.comparative_analyses ( id UUID PRIMARY KEY DEFAULT uuid_generate_v4(), analysis_type VARCHAR(50), entity_ids UUID[], comparison_data JSONB, insights JSONB, created_at TIMESTAMP DEFAULT NOW(), expires_at TIMESTAMP, INDEX idx_comparative_type (analysis_type), INDEX idx_comparative_entities (entity_ids) ); -- Market intelligence data CREATE TABLE analytics.market_intelligence ( id UUID PRIMARY KEY DEFAULT uuid_generate_v4(), genre VARCHAR(50), period_start DATE, period_end DATE, trending_elements JSONB, market_metrics JSONB, competitive_landscape JSONB, UNIQUE(genre, period_start, period_end), INDEX idx_market_genre_period (genre, period_end DESC) ); -- User analytics preferences CREATE TABLE analytics.user_preferences ( user_id UUID PRIMARY KEY REFERENCES auth.users(id), default_time_range VARCHAR(50), preferred_insights TEXT[], dashboard_layout JSONB, notification_settings JSONB, custom_metrics JSONB, INDEX idx_analytics_prefs_user (user_id) );

MVP Acceptance Criteria

  • Comprehensive analytics engine
  • Time series analysis capabilities
  • Predictive modeling system
  • Comparative analytics
  • Market intelligence integration
  • Real-time streaming analytics
  • Advanced visualizations
  • Export functionality
  • API endpoints

Post-MVP Enhancements

  • Custom metric definitions
  • Cohort analysis
  • A/B testing framework
  • Anomaly alerting system
  • Collaborative analytics
  • Mobile analytics app
  • Voice-activated insights
  • AR/VR data visualization

Implementation Time

  • Analytics Engine: 2 days
  • Time Series Analysis: 1 day
  • Predictive Modeling: 1.5 days
  • Comparative Analytics: 1 day
  • API & Visualization: 1 day
  • Testing: 1 day
  • Total: 7.5 days

Dependencies

  • F007 - Manuscript Analysis (for base data)
  • F009 - Scoring System (for quality metrics)
  • F010 - Recommendations (for improvement tracking)
  • F011 - Coach Matching (for coaching outcomes)
  • Data warehouse infrastructure

Next Feature

After completion, proceed to F013-AI-REPORTING for automated report generation.